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ABSTRACT
Most SAS® programmers agree that SAS macros are a wonderful
tool for automating repetitive tasks.  More controversial is
bulletproofing (making a macro robust to incorrect parameters or
data).  Less commonly considered is the potential that macros
offer for delivery of statistical expertise.  Statistical knowledge can
be built into macros with advanced rules for validating macro
parameter values, implementation of good statistical practice,
implementation of otherwise unavailable statistical methods, or
delivery of data-driven advice and interpretation in English.  Pros
and cons of bulletproofing and knowledge encapsulation are
discussed, and some specific techniques are presented.  Many of
the techniques are useful in non-statistical macros as well. 
Examples are drawn from macros for stepwise regression analysis
and analysis of covariance.

INTRODUCTION
This paper discusses two ways to add value to macros beyond
automation.  It is not the intent of the author to recommend their
use in all circumstances.  Rather, the intent is to discuss the
possibilities in the hope that the reader will make an informed
decision.

The unifying theme of the paper is that, at least in some cases, it
is desirable to incorporate some knowledge into the design of the
macro, so that the macro is something more valuable than merely
a labor-saving device.  How and when, if ever, to do this is the
subject of the rest of the paper.

There is a spectrum of techniques and approaches any one or
more of which might be considered.  Bulletproofing is described
first, followed by a broader collection of ideas in the section on
knowledge encapsulation.

BULLETPROOFING
This section starts with a definition of bulletproofing, continues
with a discussion of some advantages and disadvantages of
bulletproofing, and finishes with a series of examples.

Bulletproofing typically involves checking parameter values to see
if they make sense.  It also may involve confirming assumptions
about the session environment and the input data.  When
problems are found, informative error messages can be printed to
the log and the macro should clean up and exit gracefully.

WHY BULLETPROOF?
A macro might malfunction or not behave as intended if given
incorrect input.  The same might occur if assumptions about the
environment in which it the macro is run are not satisfied.

If the macro malfunctions, it might produce error and warning
messages and leave the SAS session in an undesirable state.  Or,
potentially far worse, the malfunction might not be noticed
because no error messages are generated, and yet the results,
say some statistical analyses, might be incorrect.

Although in general it is probably impossible for a programmer to
guarantee that a macro will never malfunction in any
circumstance, it most certainly is possible to prevent some
malfunctions through the use of bulletproofing.

Bulletproofing can also speed debugging of calling programs.  It
can aid learning of the correct calling syntax - it is like a built-in
teacher if messages are helpful and informative.  Bulletproofing is
built into the macro, so it is always there even when the

documentation is not available or not read.

DRAWBACKS TO BULLETPROOFING
Bulletproofing requires additional programming effort.  It increases
length and complexity of code.  One has to be careful not to
introduce errors in the bulletproofing code.  Finally, one has to be
careful only to catch true errors, and not prevent legitimate use of
the macro.

BULLETPROOFING EXAMPLE 1:  SAS VERSION 
Some statistical PROCs behave differently under different
versions of SAS.  One might wish to prevent use of a macro under
SAS versions other than those in which the macro was tested. 
This is one way to do this:

%if not ( "&sysver" eq "6.12"
or "&sysver" eq "8.00"
or "&sysver" eq "8.1" ) %then %do;

%put;
%put *** MACANOVA &er&ror: Running under SAS

version &sysver;
%put *** MACANOVA has not been validated for

this release;
%put;
%goto exit;

%end;

&er was defined as ER and &ror was defined as ROR; the source
code does not contain the word ERROR but the log will if it should.
%goto is ugly but works; label %exit: is near the end of the macro.
&sysver is not consistent in the number of characters to the right
of the decimal point.  Quotes are probably not necessary here
except to ensure character comparison; the quotes are included.

A useful variation on this technique is to branch conditionally in the
macro based on the SAS version.  For example, a macro might
have to parse PROC GLM output in SAS 6.12  to access certain
statistics, whereas in SAS 8, all statistics are available in datasets
through the use of the ODS feature.

BULLETPROOFING EXAMPLE 2:  PARAMETER VALUES
A typical use of bulletproofing is to examine macro parameter
values:

%if %length(%sysfunc(compress(&sstype,' '))) eq
0 %then %do;

%put;
%put *** MACANOVA: SSTYPE parameter is

missing, defaulting to 3;
%put;
%let sstype = 3;

%end;

%sysfunc can call almost any data step function, and other
useful functions as well.  %sysfunc(compress()) is used rather
than the autocall macro %compress because it will work even if
the user has not installed the SAS autocall library.  Blanks are
compressed out in case the parameter is a blank, eg. if
sstype=%str(  ).

%if &sstype ne 3 and &sstype ne 2 %then %do;
%put;
%put *** MACANOVA &er&ror: SSTYPE parameter

is not equal to 2 or 3;
%put;
%let badflag = 1;

%end;



%if %sysevalf(&alphabtw le 0)
or %sysevalf(&alphabtw ge 1) %then %do;
%put;
%put *** MACANOVA &er&ror: ALPHABTW

parameter out of range 0 < ALPHABTW < 1;
%put;
%let badflag = 1;

%end;

%if %sysevalf(&equi_l ge &equi_u) %then %do;
%put;
%put *** MACANOVA &er&ror: EQUI_L parameter

value &equi_l is not less than EQUI_U parameter
value &equi_u;

%put;
%let badflag = 1;

%end;

%sysevalf ensures floating point rather than character
comparison; %eval treats numbers as integers.  &badflag will be
checked later on.

BULLETPROOFING EXAMPLE 3:  INPUT DATA
In this example, checks are done to make sure that a specified
input dataset exists and that it contains a specified variable:

%if %sysfunc(exist(&data)) ne 1 %then %do;
%put;
%put *** MACANOVA &er&ror: DATA parameter

invalid: dataset &data does not exist;
%put;
%let badflag = 1;

%end;

&data was a poor choice for a macro parameter or variable name,
because data is a reserved word.  One can also check for the pre-
existence of temporary WORK datasets that are created by the
macro for internal use, and exit if they already exist, in order to
prevent inadvertent overwriting of user data.  Such datasets
should be probably be cleaned up (deleted) before the macro
exits.

data _in;
set &data;
run;

%let dsid=%sysfunc(open(_in));
%let
varnum=%sysfunc(varnum(&dsid,%upcase(&trt)));
%if &varnum eq 0 %then %do;

%put;
%put *** MACANOVA &er&ror: TRT variable &trt

does not exist in dataset &data;
%put;
%let badflag = 1;

%end;
%let rc=%sysfunc(close(&dsid));

Don't forget to close( ) what you open( ).  One can also determine
the number of observations, variable type, length and format, and
other properties of the data using this kind of code.  The code in
this example and in the other examples works under SAS version
6.12 as well as SAS 8.

BULLETPROOFING EXAMPLE 4:  REQUIRED MACRO
This example checks whether a required macro is available to the
SAS session:

proc sql noprint;
select distinct objname
into :macnames separated by ' '
from dictionary.catalogs
where memname in ('SASMACR')

and objtype in ('MACRO')
and objname in ('LEVENE');

%if "&macnames" ne "LEVENE" %then %do;
%put;
%put *** MACANOVA &er&ror: Required

homogeneity of variance testing macro LEVENE;
%put *** is not available.;
%put;
%let cleanout=1;
%goto exit;

%end;

This code only detects macros that have been defined or
%INCLUDEd or AUTOCALLed during the session.  It does not
detect macros not yet invoked but in an AUTOCALL library. 
"separated by ' '  "  is not necessary here because there is only
one macro being checked for, but is useful when the list of macros
is longer.

BULLETPROOFING EXAMPLE 5:  REQUIRED FILEREF
This code checks whether a fileref is valid:

%if %sysfunc(fileref(&macroref)) eq 0 %then %do;
%if &debug eq Y %then %put MACROREF fileref

&macroref validated;
%end;
%if %sysfunc(fileref(&macroref)) lt 0 %then %do;

%put;
%put *** MACANOVA &war&ning: MACROREF

fileref &macroref is defined but invalid;
%put;

%end;
%if %sysfunc(fileref(&macroref)) gt 0 %then %do;

%put;
%put *** MACANOVA &war&ning: MACROREF

fileref &macroref is not defined;
%put;

%end;

&war was defined as WAR and &ning was defined as NING; the
source code does not contain the word WARNING but the log will
if it should.

Many other kinds of bulletproofing checks can be made; these
examples are provided to convey the general idea and a few
techniques the author has found useful.

KNOWLEDGE ENCAPSULATION
One can't write any program or macro without knowing what it is
supposed to accomplish.  But in this section "knowledge" can
mean something beyond the knowledge that it takes to write an
ordinary program.  The focus of this section is on ways that
subject matter expertise of the programmer or statistician can be
somehow incorporated into (encapsulated within) the macro itself,
to the benefit of future users.

ENCAPSULATION EXAMPLE 1:  ANOVA TABLE/CONTRASTS
As discussed earlier, one way to incorporate knowledge is to
foresee problems and disarm them with appropriate bulletproofing.

Bulletproofing can get quite statistical in nature.  For example,
many users of PROC GLM might not realize that the SS2 option
on the MODEL statement (for Type II sums of squares) affects the
ANOVA table, but not the output of the LSMEANS, CONTRAST
and ESTIMATE statements.  This can be important in certain
circumstances.  The following code, when used to perform an
analysis of data from a trial with two levels of the treatment
variable, can produce an inconsistency between the p-value in the
ANOVA table and the p-value in the ESTIMATE statement:

proc glm;
class center trt;
model y = trt center trt*center / ss2;
estimate 'trtest' trt 1 -1;

In a macro that performs fixed effects analysis of covariance using
PROC GLM, and which permits either Type II or Type III sums of



squares, it is possible to anticipate this problem.  One can parse
the specified model statement to see if there is an interaction with
the treatment variable, check whether the specified sum of
squares type is II, and check whether contrasts are requested.  If
all three are true, one can alert the user about the inconsistency
and prevent the macro from generating the contrasts.

ASSUMPTION CHECKING AND INTERPRETATION
In a typical Phase III clinical trial, two key assumptions of analysis
of variance are homogeneity of variance and normality of
residuals.  These assumptions are commonly tested.  The user of
an analysis of covariance macro in this setting, probably a
statistician or statistical programmer, is well aware of the need to
check these assumptions and the methods of doing so.  The
assumption of independence of residuals is not usually violated
and is examined less often.  And the assumption that the
independent (predictor) variables are truly independent is to a
great extent guaranteed by the fact that the experiments are
designed well.  Therefore, other than perhaps providing the
functionality of performing the tests of the normality and
homogeneity assumptions, there is no particular need for the
analysis of covariance macro to provide interpretation of results.

By contrast, in industrial settings, stepwise multiple regression or
multiple regression is often used by non-statisticians to analyze
the results of historical plant operating data for the purpose of
building a descriptive model.  A macro to perform stepwise
regression for these users, who are typically engineers, can add
tremendous value by checking assumptions, interpreting results
and providing advice in common language, eg. English.

In this industrial setting, two key assumptions are independence of
predictor variables and independence of residuals.  Both are
violated frequently.  And there are many other things that a
statistician would look at in the iterative process of empirical
model-building that a non-statistician would probably be unaware
of.  In fact, there are so many things that can be looked at that
even statisticians don't bother doing all of them because it
requires extra programming work and time to review results.  The
programmer can add value here in many ways.

ENCAPSULATION EXAMPLE 2:  COLLINEARITY
As discussed above, a big problem in unplanned historical plant
operating data is patterns of correlation among groups of potential
predictor variables.  When the non-independence is severe, it can
inflate the variances of the regression parameter estimates,
hindering model selection and leading to unreliable regression
model coefficients.

PROC REG can produce the collinearity diagnostics of Belsley,
Kuh and Welsch (1980).  These can be used to identify groups of
predictor variables that are too closely involved in patterns of
correlation.  Unfortunately, the typical engineer is not aware of the
need for, the existence of, the way to obtain, and the way to
interpret these diagnostics (which are presented in the form of a
matrix of numbers).

Prior to SAS 7, the collinearity diagnostics in PROC REG were
available only in the listing file, although it is possible to reproduce
them using PROC PRINCOMP and a subsequent data step.  In
SAS 8 they are available in a dataset through the ODS feature.

It is relatively straightforward to write code that can implement
criteria similar to those proposed by Belsley, Kuh and Welsch for
interpreting the diagnostics and present the results in
understandable English messages to the listing and/or log, to the
effect of "Warning:  Candidate predictor variables A, B, D and
G are too closely involved together in a linear relationship, so
that they do not provide independent information.  This can
lead to poor model selection and/or unreliable and
unrealistically large model coefficients. "  The attention of the
engineer can thus be drawn to the problem, and the engineer can
often think of an appropriate remedy such as subsetting or

transforming the variables based on the engineering realities of
the process being modeled; or the engineer might ask a
statistician, who might recommend other analysis techniques such
as partial least squares.

ENCAPSULATION EXAMPLE 3:  AUTOCORRELATION
Another problem in regression analysis of historical data from a
production process, especially in heavily instrumented continuous
process industries, is autocorrelation.  Process control computers
capture data at high frequency for the purposes of control.   If such
data or even hourly or daily summaries of such data are analyzed
with regression analysis, statistical tests may appear to indicate
that predictors belong in the model when in fact they don't.   When
the data sampling rate is too high, repeated measurements of
essentially the same process state will be treated by regression as
if they were "true repeats" (independently reproduced
observations).

The engineer may not always be aware of the damaging effects of
autocorrelation on the reliability of statistical tests in regression,
nor may the engineer be aware of how to check for autocorrelation
or what to do about it.

It is relatively easy to program checks for residual autocorrelation
and generate appropriate message when it is found.  One such
message might explain the problem, and suggest that the
engineer subset the data and take only every nth data point.  Or it
might recommend the use of time series analysis.

OTHER ENCAPSULATION EXAMPLES:  REGRESSION 
In the process modeling situation, one might not be so concerned
that the distribution of residuals is strictly normal, since the
statistical tests may be robust enough to perform adequately for
such purposes even in the presence of moderate deviations from
normality.  For this reason, one might prefer instead to detect
significantly skewed residual distributions and generate an
appropriate message, perhaps suggesting the user look at a
residual plot and possibly consider a transformation of the
response variable.

Influential data and unusually large residuals can be flagged.  
Curvature and heteroskedasticity can be detected.  Lack-of-fit can
be assessed when there are repeats.  Appropriate messages and
suggestions can then be generated.

ASSUMPTION CHECKING:  FURTHER CONSIDERATIONS
One caveat about assumption checking is that the usual statistical
tests employed in checking the assumptions are themselves
subject to assumptions.  For this reason, in some circumstances,
nonparametric and robust methods for checking assumptions
might be preferred, even though they might be less powerful. 

To avoid overburdening the user with false alarms, one might
decide that a high degree of confidence is necessary before
alerting the user to a problem, perhaps on the order of 99% or
greater.  But this is dependent on the situation and requires the
judgement of the developers.

Messages may be effective if they appear as footnotes or subtitles
on plots and listings.  It is particularly effective to display a
message about a potential problem on a plot that ought to show it
visually.  For example, if an assumption check concludes that the
distribution of residuals is significantly skewed, it is very effective
to display the message on a residual plot or histogram so that the
user can confirm the situation visually.  Messages can also be
collected together in a convenient summary page or file.

ENCAPSULATION OF GOOD PRACTICE
This idea is easy to overlook.  But macros can be used as vehicles
for leveraging the knowledge of senior statisticians and
programmers.  That is, the best statistical and programming
practice can be encapsulated into a macro that will be used by
less experienced staff and those who are pressed for time.



DELIVERY OF NEW STATISTICAL METHODS
Macros can also be used to package new statistical methods.  In
this case, the macro in a sense becomes a PROC in which the
knowledge of the researcher and developer is encapsulated.

DISADVANTAGES OF KNOWLEDGE ENCAPSULATION
Advantages of the different kinds of knowledge encapsulation in
statistical macros have been discussed.  Drawbacks may include
potentially increased complexity of code (violation of the KISS
principle), increased development effort, and the danger that
inappropriate messages or actions could result if the macros are
run in unforeseen circumstances.  This last potential drawback is
also of course one of the reasons for and is mitigated by
appropriate bulletproofing.  Finally, the wording of messages has
to be done carefully in order to avoid misunderstandings.

CONCLUSION
This paper has attempted to present some ideas and techniques
that might be useful in some circumstances.  It would probably be
incorrect to make a blanket statement for or against bulletproofing
or knowledge encapsulation.  It is up to the reader to decide
whether or not they are appropriate in any given situation.

In the author's opinion, the goal should not be an expert system,
but rather a not completely stupid macro.  Considerable value can
be added by small steps.

REFERENCES
Belsley, David A., Edwin Kuh and Roy E. Welsch.  1980. 
Regression Diagnostics.  John Wiley & Sons, New York.

ACKNOWLEDGMENTS
The author would like to thank Devan Mehrotra and Lynn Wei of
Merck Research Laboratories for their assistance with aspects of
the analysis of covariance.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. 
Contact the author at:

John K. Troxell
Merck & Co., Inc.
126 Lincoln Ave.
RY 34-A320
Rahway, NJ  07065-0900
732-594-0475
john_troxell@merck.com




